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Nonlinear stability of a pressure driven core-annular flow is analysed, and a study of 
the large-amplitude interfacial dynamics is reported in the limit of a small ratio p of the 
annular clearance to the radius. An asymptotic nonlinear evolution equation for the 
annular film thickness is derived as a general case which involves shear coupling with 
the core flow. We discuss the effects of the surface tension parameter and viscosity 
stratification of various orders in p. The governing equation is investigated by solving 
it on extended intervals. Long-term simulations in a wide range of parameters reveal 
rich dynamics of wave patterns and coherent structures. Only in a narrow window of 
the small control parameters can it be described by the weakly nonlinear 
dissipative-dispersive equation, exhibiting behaviour of strictly bounded solutions 
which varies from a spatiotemporal chaos to the quasi-steady wavetrains. For 
sufficiently high surface tension, some pulses (to which the primary instabilities 
saturate) can coalesce into stable larger structures. This leads to the formation of 
solitary humps via cascade absorption. Substantial thickness non-uniformities can 
cause collapse of the perfect CAFF owing to the lens formation or extreme film 
thinning. Our critical value of the control parameter is in good agreement with the 
experimental data by Aul & Olbricht. Under strong coupling of the core flow with a 
less viscous annular film the interfacial evolution settles to a train of inverted pulses. 
Long-time behaviour in the intermediate range of parameters is diversified from 
regular pulse trains, to the formation of wide multi-peak structures or blow-up, 
depending on the apparent involvement of the core. 

1. Introduction 
Analysis of a slow viscous flow of two immiscible fluids within a tube is important 

for understanding the mobility of oil-aqueous solution mixtures in porous media (in 
particular, in the process of oil recovery by its displacement). Typically, a thin film of 
oil is wetting the inner surface of the tube, and the central part is occupied by a less 
viscous fluid. Aul & Olbricht (1 990) conducted experiments on low-Reynolds-number, 
pressure-driven flow in a glass capillary tube with thin annular oil film, and observed 
development and motion of axisymmetric lobes of the thin film fluid. Similar 
configurations appear in modeiling the dynamics of a thin liquid film that covers the 
inner surface of the lung airways studied by Johnson et al. (1991) and Halpern & 
Grotberg (1992) in the absence of imposed flow. In both problems slow flow is strongly 
affected by capillary instability of the film-inner fluid interface known since works by 
Plateau and Rayleigh (see Rayleigh 1902; Goren 1962). Its development may cause 
closing of the tube via ‘pinch-off’ of the core fluid and rearrangement of the thickened 
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film portions into lenses, as observed in experiments by Gauglitz & Radke (1988) and 
Aul & Olbricht (1990), the critical thickness is about 0.1 of the tube radius. 

The general formulation of the problem falls within the framework of a core-annular 
flow (CAF) theory which has attracted a great deal of attention during the past decade. 
This theory was motivated by an interest in the lubricated pipelining of very viscous 
crude oil (Ooms et al. 1984; Joseph & Renardy 1993; Miesen et al. 1992). Hickox 
(1971) studied effects of viscosity and density stratification on the stability of CAF to 
long-wave disturbances. Joseph and collaborators carried out a comprehensive 
numerical and asymptotic analysis of linear stability of CAFs, summarized in a book 
by Joseph & Renardy (1993), where results of experiments by Bai, Chen & Joseph 
(1992) are presented as well. In the case of a narrow annular region occupied by a less 
viscous fluid, Preziosi, Chen & Joseph (1989) found that strong viscosity stratification 
can suppress capillary instability but only for sufficiently large Reynolds number. 
Georgiou et al. (1992) conducted an asymptotic investigation of stability in the limit of 
thin annulus (CA film flow) for the case when the viscosity ratio is large compared to 
the film thickness ratio. 

Frenkel et al. (1987) carried out a weakly nonlinear analysis (for slow flow of the 
core and the film of the same viscosity) when the imposed flow is strong enough to keep 
interfacial disturbances much smaller than the unperturbed film thickness which lead 
to the Kuramotcd3ivashinsky evolution equation. Frenkel(l988) extended this long- 
wave approach to incorporate viscosity stratification and inertia of the core flow, and 
obtained a small-amplitude equation with an additional linear term which contributes 
to dispersive and dissipative effects. Papageorgiou, Maldarelli & Rumschitzki (1 990) 
gave a more systematic exposition and numerical solutions. Their simulations 
demonstrate the ‘regularizing’ effect of dispersion (a simpler treatment which directly 
relates this case to the dissipative-dispersive equation by Kawahara (1983) is given in 
$ 6 below). 

Hammond (1983) derived an asymptotic nonlinear equation describing large- 
amplitude development of the thin annular film distortions in the absence of imposed 
flow. Gauglitz & Radke (1988) extended his analysis using a more accurate (but 
asymptotically inconsistent) approximation for the surface-tension boundary con- 
ditions to simulate bridge formation in thicker films. An equation describing the 
strongly undulating interface of a film flowing down a cylinder was obtained by 
Frenkel (1992) (and it may be considered as a thin annulus limit of the long-wave 
equation by Lin & Liu 1975). In its analysis by Kerchman & Frenkel (1994) different 
regimes of evolution were discovered, and they are in good quantitative agreement with 
phenomena observed in experiments by Quire (1990). 

The leading-order nonlinear interfacial equation for low Reynolds numbers CA film 
flow with strong surface tension is derived in $3 in a general case with significant shear 
coupling between annular and core fluids. In $4 we present extensive numerical study 
of the case when this coupling can be neglected (see also Frenkel & Kerchman 1994). 
It demonstrates dynamics of pulse-like coherent structures engaged in various 
interactions, which in certain aspects is parallel to that in Kerchman & Frenkel(l994). 
Isolated pulses can be described in terms of spatially periodic travelling waves which 
are briefly considered in $5. The weakly nonlinear case and strongly nonlinear regimes 
when the interfacial shear plays essential role are studied in 56. In 57 we summarize and 
discuss results and their interpretation. 
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2. Formulation of the problem 
We consider pressure-driven core-annular flow of two immiscible fluids through a 

straight circular tube. All dimensional variables below are marked by overbars. In 
undisturbed flow the core region 0 < F < Ri is occupied by a fluid with viscosity pl, and 
thin annular film of the second fluid with viscosity p ,  is located in R, < F Q  R,. 
Constant pressure gradient F = -d&dz = - d e / d r  drives the flow. We use 
dimensionless variables by scaling lengths with the radius R,:  r = F/&, z = z/R1, 
velocities with the centreline velocity 

w, = ~ { R ~ ~ , - p l ) + R ~ p l } / 4 ~ l p z ~  
and time with Rl/ F. Pressures are measured with p,  W: (and for simplicity we consider 
mostly the case of equal densities p,  = p,). 

The undisturbed thickness ratio is defined as p = (R, - R,)/R,  (28 is the specific film 
volume for p 4 l), and other dimensionless parameters _ -  of the problem are the viscosity 
ratio m = p,/p, ,  formal Reynolds numbers R, = pl W, RJp,  (1 = I, 2; and thus R, = 
mR,), and the dimensionless surface tension 

where J = pl @i?l/,iit is a related parameter independent of W, (Joseph & Renardy 
1993). 

We can conveniently rewrite the dimensionless equations in a reference frame 
connected with the undisturbed interface, in which the basic steady flow is given by 

(2.2) 
W, = m(l -rz)/(az+m- 1) (0 < r < l), 

(1 < r < a = 1 +p). { W, = (1-r2)/(a2+m- 1) 
W(r) = 

The interface velocity with respect to the wall is W& = (az- l)/(az +m- 1) 
(z 2/3/(2/3+m) for p < l), and effective Reynolds number of the undisturbed film 
flow is rW, = R,p& 

We consider only dominant axisymmetric disturbances. The total velocities are 
written as {ul, + w,}, and the total pressures as 4 + p l  (I = 1,2). The exact nonlinear 
equations for the perturbations are 

(2.3 a) 

(2.3b) 

(2.3 c) 

r-' a,(ru,) +a, w, = 0, 
a, U, + U, a, U, + &(r) a, U, + W ,  a, U, = - arpl + R;' V2u,, 

a, w l  + u,(w; + a, W J  + (q+ w,)a, w I  = -a,p, + rw;' VW,. 

Here Wi = d&/dr. Boundary conditions are no-slip at the wall 

u, = w2 = 0, r = l+p.  (2.4) 

rif = 1-pv7 (2.5) 

(2.6) 

The perturbed interface is described by a deflection function ~ ( z ,  t )  

and thus the scaled annular film thickness 

h = (R,- Rif) / (R,-Rl)  = 1 +v. 
We are focused on the analysis of nonlinear stability when the annular film is thin: 

/3 4 1 , but not limited to the case of small interfacial perturbations 7 = Ow) considered 
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by Frenkel et al. (1987), Frenkel(1988), and Papageorgiou, Maldarelli & Rumschitzki 
(1990). The decomposition of the total velocities into basic velocities (2.3) and their 
perturbations is generally by convention, because they can be of the same order. It 
makes the derivation easier (and the comparative analysis in a special case of small 
amplitudes as well). 

The conditions at the interface are as follows (where derivatives of r are denoted by 
subscripts z and t ) :  

the continuity of velocities: 

u1 = u,, wl+w, = w,+w,,  (2.7) 

and finally, the kinematic condition at the interface 

3. Leading-order equation for the interface 
We consider asymptotic expansions of solutions for small thickness ratio /3 in the 

conditions of low-Reynolds-number flow. The surface-tension parameter (r is assumed 
to be large enough with respect to /3', and therefore according to the linear stability 
analysis by Joseph and his co-workers (Joseph & Renardy 1993) confirmed in 
Georgiou er al. (1992), criteria for the initial development of interfacial disturbances 
are essentially the same as in classic Rayleigh theory for viscous threads and annular 
films without imposed flow (see e.g. Goren 1962; Hammond 1983). Disturbances with 
wavelengths larger than the circumference of the unperturbed interface are unstable 
and the fastest growing modes are about 4 2  of this critical length - thus a primary 
characteristic scale along the tube is of the order of core radius (one in our 
dimensionless units). 

Simplified equations for thin annular film are similar to those of lubrication theory, 
with the perturbation flow driven primarily by ' large ' pressure perturbations at the 
distorted interface as (2.9) prescribes. The core flow for R, 4 1 is described by Stokes 
equations. (The general case R, - 1 can be considered by means of the Orr-Sommerfeld 
equation as in Frenkel (1988) and Papageorgiou et al. (1990), but only when 
perturbations of the core flow are small enough to allow linearization.) 
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Let us introduce the stretched coordinate across the vicinity of the interface 
(including the entire annular region): r = 1 +Py,  so that in the film -7 < y < 1 .  
Retention of the few terms in formal expansion of the film flow equations in powers 
of P yields an extended lubrication approximation 

p' a, u, + a, w, = - u, + O@u,), (3.1 a) 

( 3 . l b )  

a,pz = @R2)-' a;, u2 + N u , ) .  (3.1 c) 
pz w2 - R, a.pz = -P' a, w, + R,( w, + w,) a, w, + O(w,), 

Conditions at the wall are 
u2 = w 2  = 0 ( y  = l), (3.2) 

and conditions (2.8H2.10) at the interface y = -7  can be expanded to their leading 
order in /3 as 

up = 241, w2 = w1+(W,- W,), (3.3) 

(3 -4) 

(3.5) 

a, W, = m-lp(a, w1 +a, UJ, 

p ,  + BP(?&, + 7) + 2R,' a, w, = p1 + 2R,' a, wl. 
Here for y = O( 1) 

We suppose the surface-tension parameter B to be large enough that capillary 
pressures, induced by the interfacial distortions, dominate the perturbation film flow 
and set orders of magnitudes for velocities u2,w2, including the case of sizeable 
disturbances 7 = 0(1), w, = O(F+&). The latter implies a small Goucher number Go = 
R1/r  - C1l2, where i? = (@/F)l/' is the capillary length, and C is the capillary number. 
From the normal stress condition ( 3 . 9 ,  the magnitude of the dimensionless pressure p ,  
is of the order a&. Axial momentum and continuity equations stipulate the respective 
scales for film velocities: w, = O(R,/32p,) and u, = O@w,). Thus, we can seek 
asymptotic expansion of the film solution in the form 

p z  = CTflp(0) + Pp(1) + * . .], (3 .7a)  

u, = R, U p l [ U ( O )  + PU(') + . . .I, (3 .7b)  

( 3 . 7 4  

with the 0(1) functions p(O), do), do). 
Leading-order solution to (3.1H3.5) satisfies (3.1) with zero right-hand sides, and 

can be written in a general form which involves coupling with the core flow by means 
of the perturbation shear strain rate at the interface 

w, = R, Bp[w(o) + Pw(') + . . .I, 

Y = ( a r w l + a , ~ l ) r - l - & ~  (3-8)  

(taken in its leading order), as follows 

P(O) = - (TZ2 + 171, (3 .9a)  

(3 .9b)  
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disturbed interface 
Substitution of (3.9) into (2.10) provides a general form of the evolution equation for 

It is convenient to rescale the dimensionless time employing the intrinsic velocity of 
the unperturbed interface Kf = 2/3/(2/3+m): t' = Kf t that brings (3.10) into 
'standard' form (and hereinafter primes are dropped) 

(3.11) 

Here s = +R2 (7/3"2/3+m) = ;Rf Crf pz (3.12) 

(where rf = a/@-, R, W;f)). 
The control parameter S is of the order one or higher (it can be of the order p for 

some positive q < 2). Applicability of (3.9H3.11) is limited by a condition that the core 
perturbations do not play a predominating role: y - [w, C T / ~ ~ T  at most. 

Derivation can be completed by expressing (or estimating) the last summand in 
(3.1 1) in terms of the interfacial deviation T,I over the specific parameter ranges. 

The core solution may be treated using a perturbation stream function Y, 

U, = -a, !PI, w1 = r-lY1+a, !PI, (3.13) 

and thus the interfacial shear (3.8) can be written as 

y = [(a,", + r-' a, - r-' - a,",) YJ, - l -pT. (3.14) 

We can expand Y, in powers of /3 

Yl = ?p") + p p  + * . * . 
Functions $('), $(I), . . . , satisfy the Stokes equation 

D z ~ ( n )  = 0 

(3.15) 

(D = arr + r-l ar - r-' + a,,), (3.16) 

and the conditions of sewing together with the film solution at the interface (3.3), that 
is at r = rif 

a, Y~ = - ~ s , ~ ~ ~ [ U ( ~ ) I , = - , I ,  (3.1 7 a) 

( l - /3~) -1!Pl+~rY,  = (1-m) ~f~+3SW3w(0)I , ,$ .  (3.17 b) 

When m is asymptotically greater than P :  m 9 B and thus Kf = 2m-'/3+ O w ) ,  for 

(3.18) 

Therefore the last term in (3.1 1) is of the order of pm-' at most, and for sufficiently 
strong surface tension the effect of interfacial shear can be neglected in the leading-order 
equation which takes the closed form 

l t  + 7% + SN1 + 9)3 (7, + l r r r ) ) ,  = 0, (3.19) 

and recall that (3.11) and (3.19) are written in a reference frame moving with the speed 
of unperturbed interface (one in the rescaled non-dimensional units). 

Inference on negligibility of coupling with the core for S - 1, based on (3.1 S), remains 
valid for m 9 /3 in the case when (small) perturbations of the core flow can be described 
by the Orr-Sommerfeld equation with the Reynolds number Iw, of order one. 

S - 1 we can estimate magnitudes of boundary values at r = 1 -& as 

a, Yl = O(pzm-l), Y1 + ilr Y, = O(Pm-'). 
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In a laboratory reference frame connected with tube walls, it is useful to rewrite 

(3.20) 

We note that only positive solutions h = O( 1) are asymptotically consistent. 
The weakly nonlinear limit when S < 1, and intermediate cases when both the 

nonlinearity and the interfacial shear are essential, will be discussed in $6. 
Other long-wave evolution equations of film flows have a form close to (3.20): the 

Benney equation for film on an inclined plane (Benney 1966; Gjevik 1970; Pumir, 
Manneville & Pomeau 1983) and equation of thin film flowing down a fibre (Frenkel 
1992; Kerchman & Frenkel 1994). The latter differs from the decoupled CAFF 
equation (3.20) only by nonlinearity in the convective term 

h, + 2h2h, + S,{h3(h, + h,,,)}, = 0. (3.21) 

Hammond (1983) studied nonlinear adjustment of a thin film within capillary in the 

h, + 3-’{h3(hz + h,,,)}, = 0, (3.22) 

which can be considered as a limiting case of (3.20) when parameter S is very large 
(after rescaling the latter to the same viscocapillary time 7 = 39) .  We show below that 
the long-time behaviour of solutions to (3.20) in the limit S >> 1 differs, however, from 
that for (3.22). Aul (1989) derived an equation equivalent to (3.19) as a generalization 
of the Hammond one, in the form 

h, + W(h - 1) h, + 3-l{h3(h, + h,,,)}, = 0, (3.23) 

where his control parameter W = 1/(3S). 
To solve (3.23), Aul (1989) used a method of lines by replacing spatial derivatives 

with central finite-differences, and integrating with respect to time the resulting 
nonlinear system of coupled ordinary differential equations. His limited solutions 
involved only short-time simulations of the monochromatic fastest growing dis- 
turbances on spatial intervals of length Lo = 2 7 4 2  and 315, (with one and three 
waveforms respectively), and showed their linear growth in time as standing waves in 
the reference frame of the interface. (That is true only for the very short initial stage.) 
We have repeated some of the computations by Aul using the pseudospectral method 
with the controlled global error 5 (it was evaluated by doubling the number of 
gridpoints and estimating the truncation errors, see $4 and Kerchman & Frenkel 1994 
for details). Our computations detected serious discrepancies with the results in Aul 
(1989), even by the order of magnitude. Specifically, in the case of sufficiently strong 
imposed flow ( S  = 0.033-0.06) Aul’s results (for his parameter W > 4) indicated 
‘halving of the wavelength’ and dominance of the second harmonic in the wave profiles 
with amplitudes 9 > 0.5. Actual magnitudes in our simulations for the same data were 
far smaller (qmaz < 3s)  in this range of control parameter, and with less significant 
higher harmonics, see figure l(a) for the same case as in figure 2.10 of Aul (1989): 
W = 10.0 (our S = 0.033). Only small-amplitude interfacial perturbations have been 
observed for large W (small S )  in laboratory experiments by Aul (1989), and also in 
our simulations of extended systems (see #4 and 6). Figure 1 (b) for S = 0.833 shows 
the development of the three-lobe system from initial disturbances with the middle 
wave of larger amplitude than the other two (corresponds to the Aul case for W = 0.4 
in his figure 2.17). Evolution differs from that predicted in computations by Aul : a 
‘mini-train’ of saturating pulses emerges and it is moving slower than the unperturbed 

(3.19) in terms of the full dimensionless thickness h = 1 +r 
h, + hh, + S{h3(h, + h,,,)}, = 0. 

absence of imposed flow and obtained equation 
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FIGURE 1 .  Evolution governed by (3.19) and (3.23) with the same parameters and initial conditions 
as in Aul (1989): (a) S = 0.0333 ( W =  10) and monochromatic initial conditions 01 0 < z < Lo = 
2nd2 (compare with figure 2.10 in the work cited); (b )  three-lobe evolution for S = 0.833 (W = 0.4) 
on 0 < z < L = 3 4 ,  with initial disturbances 7 = - 0.1 cos (2nzlL) - 0.05 cos (6nz/L), corresponds to 
figure 2.17. Dashed line h = 1 indicates the unperturbed interface. Numbers show time T for (3.23), 
respective times for (3.19) are f = 7/(3S). 

interface. No droplet-like formations between major lobes (claimed to be similar to the 
satellite lobes in simulations of Hammond equation) were observed either here or in 
our simulations of spatially extended systems for S < 1. (They do appear as a 
temporary pattern for larger S which correspond to the conditions of those experiments 
by Aul & Olbricht (1990) where the secondary lobes were observed, see figure 8 and 
remarks in the next section.) Errors in computations by Aul might be due to inadequate 
approximation of the convective term in the method of lines and insufficient resolution 
of finite-difference substitutes to the high-order derivatives. 

The assumptions used in the derivation of (3.1 1) and (3.20) are satisfactorily realized 
for the conditions in which water displaces oil in the capillary pores (m > 1) with 
reasonable capillary numbers C 4 1. Specifically, in the relevant experiments by Aul & 
Olbricht (1990) (see also Aul 1989), the parameters are: the tube radius R,  = 27 pm, 
the initial thickness ratio 0.03-0.09, and the viscosity ratio for the model wetting fluids 
m = 19; 80; 173. The Reynolds numbers in the core were small enough: R, < 0.04. The 
capillary number C = pl V/a varied over the range 0.002-0.04 (here B z iq is the 
average velocity in the core), and the values of our parameter S were in the range 
2.2 2 S 2 0.1. The film liquid gathered into lobe-like structures owing to interfacial 
instability, and further development resulted in the formation of a lens and pinch-off 
of the water core, except in the regime when Aul's parameter Wwas greater than 2 (our 
S < 0.16). In the latter case, the undulating interface with asymmetric lobes continued 
to propagate downstream, keeping the annular film configuration intact. 

The small-box-confined simulations do not reveal all the fundamental pecularities of 
the real extended systems (Hyman, Nicolaenko & Zaleski 1986; Cross & Hohenberg 
1993; Kerchman & Frenkel 1994). Detailed study in @4-6 demonstrates a wealth of 
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complicated dynamics in interfacial evolution governed by (3.20) and (3.1 1) which 
strictly depends on S (and other parameters). Our numerical simulation also shows 
phenomena observed in experiments by Aul & Olbricht. 

We can also rewrite (3.20) in the original dimensional variables 

(3.24) 

Here fi, = /3R2 is the mean film thickness over the entire spatial interval in 
consideration, and Wtf = tFRz ho/p2 is the respective unperturbed interfacial velocity. 
We assume these dimensional global parameters to be fixed in the course of the 
evolution, although (3.24) remains valid in a more general case when the total volume 
of annular film varies, as in certain experiments by Aul & Olbricht (1990), provided 
that the variation is slow enough. 

Within a very long system with steady influx and outflow the periodic boundary 
conditions on extended intervals appear to be natural, and they are set in most 
numerical solutions of the film evolution equations. It should be noted, however, that 
even with fixed parameters, large-amplitude interfacial evolution can lead to the rise of 
lengthy subsystems which are characterized by a different local mean thickness, see 
below. Equation (3.24) allows us to interpret these large-scale inhomogeneities via 
internal renormalization. 

_ -  - 

4. Long-term behaviour of extended systems: chaos, pulse trains, and 
coalescence 

We integrated evolution equations in the form (3.19) and (3.20) with periodic 
boundary conditions on extended intervals 0 < z < 2nq using the pseudospectral 
Fourier method and a simple predictor-corrector scheme for stepping in time (Euler 
predictor with the trapezoidal corrector step were used in most computations.) In order 
to avoid aliasing, the higher t of Fourier harmonics of h were smoothed to zero (for 
more details on numerical technique see Kerchman & Frenkel(l994) where equation 
(3.21) with the same quartic nonlinearity is considered.) With tough restrictions on the 
time-step imposed by the spectral stability condition, the spatial resolution was more 
a concern than the time-step errors. Accuracy of the spectral approximation was 
evaluated by magnitudes of the truncated modes, and the results were verified by 
doubling the number of grid points where necessary. We studied long-time evolution 
for values of S from 0.01 to 5.  Parameter q was taken in the range 8 < q < 25 with the 
corresponding number of grid points from 256 to 1024. Thus, the systems considered 
are lengthy enough to accommodate a significant number of the fastest growing 
linearly unstable modes. The complex dynamics of evolving patterns strongly depend 
on the control parameter S. According to (3.11) and (3.20), the global mean film 
thickness has to be conserved, and this requirement, as well as the accuracy of 
computations (based on estimates of truncated harmonics), was thoroughly controlled. 

As for initial conditions h(z,O), we set them to two different types for the 
disturbances of the uniform film: (i) ‘large-scale’ disturbances, the sum of a small 
number of lower modes A,cos (kz/q+m,n/2), with k = 1,. . . , 6  and either (all 
amplitudes) A, = 0.02 or A, = 0.05; and (ii) ‘quasi-random’ small disturbances which 
contained all active modes. 

For very small values of S < 0.04, the primary instability saturates with amplitudes 
of waves so small (7 < 0.1) that nonlinearity in the surface-tension-dependent terms of 
(3.19) is insignificant and evolution is very close to that in the weakly nonlinear case 
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FIGURE 2. Quasi-chaotic evolution governed by (3.19) with periodic conditions on 0 < z < 2nq (q = 
20.0) for S = 0.05. Interfacial profiles are shown successively shifted at time intervals Af = 40, the 
amplitude scale is given at the right-hand side. Note that the dashed auxiliary axes here and in some 
figures below indicate the zero level of the ordinate variable-either or h-for the selected 
snapshots. 

governed by the Kuramoto-Sivashinsky (KS) equation. Solutions exhibit spatio- 
temporal chaotic behaviour with a finite-dimensional attractor as inertial manifold 
as described in numerous studies, see Hyman et al. (1986), Constantin et al. (1989), 
Collet et al. (1993), Cross & Hohenberg (1993). We consider this limit and related cases 
when the core dynamics becomes pertinent in $6.  

For larger values of S, in the course of development of the fastest growing modes, 
initially a wavy regime is generated with M ,  = [ q / 2 / 2 ]  major peaks (see Iooss & Rossi 
(1 989) ; Kerchman & Frenkel (1994) for similar situations). The timescale for an early 
stage of development is due to capillary instability of the dimensionless magnitude S-’ 
according to linearized analysis of the unstable growth. The actual process of pattern 
formation and evolution depends on essentially nonlinear effects which introduce 
different characteristic times for the mature stage (and additional lengthscales as well). 
Large-time evolution of the system for 0.05 < S < 0.08 can be regarded as a quasi- 
chaotic defect-mediated dynamics of a cellular pattern (Coullet & Lega 1988; Cross & 
Hohenberg 1993). Figure 2 presents a series of snapshots at consecutive instants for 
S = 0.05. The train of disorderly moving N cells ( N  < M,) is drifting slightly faster 
than the unperturbed interface, with complicated dynamics of waves of strictly 
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FIGURE 3. Development of a regular pulse train for S = 0.125 
(q  = 20, wave profiles at time intervals At = 20). 

bounded amplitudes qmaz < 3s. Observed phenomena include quasi-elastic collisions, 
cell mergers (period doubling), Eckhaus instability, nucleation of defects on cell 
boundaries, and intermittency. 

For S 2 0.09, development of the wavetrain from small-amplitude initial dis- 
turbances results in the formation of a more sparse pattern of coherent structures 
usually termed pulses (Cross & Hohenberg 1993; Kerchman & Frenkel 1994). Their 
number and disposition of major humps sensitively depends on initial conditions. 
(Pulse-forming mergers of the underdeveloped waveforms are seen in figures 3-5.) 
Further evolution of the system can be described in terms of motion and interactions 
of these stable pulses propagating as a whole. 

Thickness of flattened film in spans between humps is almost constant and depends 
mainly on the value of S (and slightly on the ‘size’ of pulses). Figure 6 presents 
cumulative data on the ‘substrate layer’ thickness h, versus S acquired from computer 
simulations for various initial conditions. Individual isolated pulses can be identified 
very closely with the spatially periodic travelling waves h = h(z- Vt)  to (3.20) for the 
different cell-lengths 2n.h. These one-hump basic solutions (which for h > 1.2 
correspond to the supercritically stable structures) play a fundamental role in the 
description of the large-time behaviour and understanding of various interfacial 
interactions. We discuss them in more detail in the next section. 
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FIGURE 4. Evolution of the wavetrain for S = 0.2 (q = 20). The pulse which emerges near the left- 
hand edge at t E 300 travels faster and in passing absorbs smaller ones. The coalescences are not 
absolutely inelastic - a small droplet remains on the spot of collision. 

When differences in sizes and velocities of the adjacent pulses are sufficiently small, 
their mutual interactions take place without merger (particle-like) and result in a slow 
‘quasi-elastic7 exchange of amplitudes and velocities. For large times after a series of 
weak interactions the system tends to a steady propagation of identical pulses, as figure 
3 shows for S = 0.125. That explains the tendency of lobe-like structures to equilibrate 
in size noticed by Aul (1989) in his experiment with our S x 0.12. This kind of 
behaviour with a steady attractor is typical in the narrow window 0.09 < S < 0.15, so 
the primary saturated pattern is kept intact. It might happen when values of S are 
larger but only for a meagre class of the regular initial conditions which evolve into a 
system of nearly equal pulses. 

For 0.15 < S < 1 .O, the pulse train evolution is dominated by another phenomenon : 
collision of two structures, one of which is larger enough than the other, brings about 
their coalescence. The enlarged pulse travels faster, and when it catches up with smaller 
ones swallows them up, leaving an elongated section of thinned flattened film behind, 
as figures 4 and 5 (a) show for S = 0.2 and S = 0.8, respectively. Figure 5(b) shows that 
the hump height (and velocity) undergoes only insignificant slow variations between 
mergers, but grows abruptly in the short acts of coalescence. Such an avalanche-like 
fusion cascade leads to the formation of a tall ‘solitary’ structure with the local film 
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FIGURE 5. (a) Coalescence cascade for S = 0.8 (q  = 10.0). (b )  Time dependence of the peak's 
height h,  for a growing pulse. 
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FIGURE 6. Variation of the substrate layer thickness h, (between the dashed curves). Each vertical 
segment shows the range of thinning for the corresponding value of S (as a summary of 
computational experiments). 

thickness several times larger than the average one. For very lengthy systems 
coalescences start in different spots simultaneously, and the large 'predatory ' pulses 
saturate when no film substance to absorb is available (in excess to hs). A similar 
scenario with consecutive acts of swallowing was observed in experiments on films 
down a fibre by Quirt (1990), and appeared in simulations of the relevant evolution 
equation (3.21) by Kerchman & Frenkel(l994) (who ascertained it to be related to the 
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FIGURE 7. Simulation of (3.19) for S = 1.5 (q = 10). Profiles of the full thickness h = 1 +v  are plotted 
in a reference frame of the unperturbed interface. Coalescence at t z 175 (dotted profile) occurs as 
a result of the multi-pulse interaction. 

deep inelasticity of the pulse interactions.) Liu & Gollub (1994) observed absorption 
of small waves by a larger one and formation of ‘solitary’ pulses in a film flowing down 
an inclined plane. In our problem, considerable local thickening of the annular film in 
the collar-like structures can cause loss of stability and the lens formation as in 
experiments by Aul & Olbricht (1990), see also the next section. 

Figure 7 shows that coalescences may occur for S 2 1 as a result of long-term group 
interactions. The mergers are less likely to happen for S > 2 (figure 8). In this range of 
parameter the film structure is highly inhomogeneous, with its volume mainly collected 
in slowly moving lobe-like structures, usually crowded in groups (hump packets), and 
very thin film in lengthy spans between them. This thinning limits the film liquid influx 
to a lobe in the same way as for Hammond’s equation. The characteristic times for a 
flattened ‘substrate’ are far greater than the other timescales of the system. Thus, the 
secondary processes in lengthy spans of this thinned film, of dimensional thickness 
l(, = h,h,, which can be treated via proper renormalization of (3.24) with the local 
parameter S‘ x Sh: < 0.1, are of negligible magnitude and do not influence major 
humps and their interactions. The mean thickness calculated over the long hump 
packets in figures 7 and 8 is 1.41.6 of the global mean, and thus the effective 
magnitude S“ of the control parameter there is actually 2-2.5 times greater than the 
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FIGURE 8. Train of lobes in the conditions of long-time group interactions and no mergers for S = 
3.0 (q  = 8, simulation of (3.20) in a laboratory reference frame). The film in long spans is thinned to 
h, = 0.094.1, and the minimum thickness in troughs hmc, = 0.01-0.015. 

nominal one. The minimum thickness of the film (in ‘troughs’ between the interacting 
humps) can be extremely small for S > 2: dimensionless hmin < For the 
reasonable film thickness in narrow capillaries h, = (1-10) pm, the van der Waals 
forces become significant at hmrn - 0.1 pm (Aul & Olbricht 1990), and this can cause 
rupture of the film. Even if the film neither rearranges into lenses owing to local 
thickening nor ruptures because of thinning, t h s  extremely non-uniform configuration 
should not be regarded as a regular CAFF - it is, rather, slow pushing of coagulated 
lobe clusters (in particular, magnitudes of the flux along the film vary by several 
orders.) Large-time behaviour is different from the limiting case ( S =  00) of the 
Hammond equation (3.22) in which the long-term evolution results in partitioning of 
the film into a number of separate static lobes and the small satellite lobes (droplets) 
between them (Hammond 1983). No droplets will survive under an arbitrary weak 
imposed flow, they are eventually absorbed by the moving lobes as in figure 8. It takes, 
however, a considerably longer time than the duration of experiments by Aul & 
Olbricht (1990) where only an early stage of satellite lobe formation was observed, 
similar to that for times 20 < f < 40 in figures 7 and 8. 
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5. Steady pulses and their interactions 
We consider evolution equation in the form (3.20) and are seeking uniformly 

translating pulse-like solutions h = H ( Z ) ,  Z = z- Vt.  They satisfy an ordinary 
differential equation which can be integrated to yield a third-order equation 

SH3(H”’ + H’)  - V H +  $H* = c. (5.1) 
Solitary-wave solutions satisfying the conditions H = 1, H’ = H” = H”’ = 0 at 

infinity have been investigated for the dispersivedissipative equation in Kawahara & 
Toh (1988), Chang, Demekhin & Kopelevich (1993), and for the Benney equation by 
Pumir et al. (1983). In the case of the film-down-fibre equation (3.21), Kalliadasis & 
Chang (1994) argued that solitary waves do not exist for sufficiently larger values of the 
control parameter S, > 1. These soliton-like structures for (3.20) are subjected to 
Rayleigh instability at their flat ‘wings’ far from the peak and do represent any 
meaningful asymptotics to an initial-value problem, and the same is true for the above- 
mentioned equations. Amick & Toland (1992) rigorously proved non-existence of true 
solitary waves for an equation close to (5.1), and revealed the complicated nature of 
trajectories homoclinic to a set of periodic orbits in a neighbourhood of equilibrium, 
i.e. to a state with quasi-periodic ripples at infinity. As for other dissipative systems that 
are convectively unstable, and similarly to the equation (3.21) that we studied before 
(Kerchman & Frenkel 1994), of special interest are spatially-periodic travelling waves 
to (3.20) with the appropriate periodicity lengths 27th (h,(S) > h > 1.2) which reflect 
a cellular pattern of evolving pulse trains. (In the nonlinear analysis of the saturation 
of monochromatic disturbances for the Benney equation by Lin (1969), Gjevik (1970), 
and Joo & Davis (1992) similar structures are termed super-critically stable permanent 
waves.) We can choose integration constant C in (5.1) as C = ;Hi - VH,, where H, < 1 
is the thickness in the point outside the crest where H”’+ H‘ = 0 (obviously H,(S, A) 
are in the range of substrate thicknesses, h,(S) appeared in the simulations of extended 
systems). The steady pulse solutions were constructed with high accuracy by an 
iterative spectral method. We started by solving (3.20) with periodic conditions on 
0 d z < 27cA and the suitable ‘single-hump’ initial conditions, and integrated the 
equation until the development settled to a quasi-steady propagation (by setting 
starting state via continuation in h and S it was reached in a reasonable time.) This 
solution H ( ” ( Z ) ,  and the corresponding values of the pulse speed V ( l )  and substrate 
thickness Hjl )  were used as a first approximation. We then improved it on an N-grid 
Z ,  = 27cAl/N by means of relaxation 

Hi’+’) = H‘” 2 + 9 AH 2 (I = 0, . . . , N -  l), V(’+l) = V”) + 9. AV, (5.2) 
with 9 = 0.5-0.7. Here AV and the Fourier coefficients of the increment { &} = P [ A H ]  
for a given periodicity 27th are obtained from a spectral form of the Newton-Raphson 
step in finding the solution to (5.1) (properly truncated to ensure dealiasing) 

where the coefficients and right-hand sides are the discrete Fourier transforms 
computed with the previous approximation H = 

} (5.4) 
{A,} = F [ H ] ,  {Bk> = 9[S(H)3i9 

{Dk} = F [ 3 S ( H ) 2  (H”’ + H’) + H -  V‘”], {Gk} = 9[C‘j’  -:(H)’]. 
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For the convergence with the acceptable approximation errors lop5 we typically used 
N = 256. 

Pulse solutions for the cell-length 47t ( A  = 2) and different values of S are shown in 
figure 9. Figure 10 illustrates dependence on the cell-length. The hump width at the 
unperturbed level h = 1 is virtually independent of both S and A : Az x 1.571 - the same 
as appeared for all pulses in simulations of extended systems. Thus the tube radius 
indeed continues to serve as a major axial lengthscale in the developed stage of 
evolution. In the front of the crest the film thickness undergoes damped undulations 
with a substantial first depression. This profile reflects the analytical structure of a 
dynamical system associated with (5.1) near the homoclinic intersection of Shilnikov's 
saddle-focus type at { H  = H,, H' = 0, H" = 0) in the same way as for systems studied 
by Pumir et al. (1983), and Kerchman & Frenkel(l994). Indeed, we can rewrite (5.1) 
as a three-dimensional system with a tangent form in the origin 

where U, = H - H , ,  U2 = H',  U, = H". Cubic equation for eigenvalues of the 
linearization matrix 

has a real root pcl of the same sign as V -  H,  (positive in our case, that defines a one- 
dimensional unstable manifold) and a pair of complex conjugate eigenvalues f iq5. 
An infinite number of periodic orbits, including the constructed pulse solutions, do 
originate in the neighbourhood of points { H  = H,, H' = 0, H" = O} .  However, the 
existence of an orbit homoclinic to the unperturbed state { H  = 1, H' = H" = 0},  which 
corresponds to a true solitary wave, is questionable even for small S.  

Thickness H,(S, A) slightly decreases with increasing A. The maximum height of a 
stable pulse H ,  is roughly proportional to A as the cell-length increases, and the local 
thickness grows correspondingly (over the piece of the axial length 2n enclosing the 
hump). 

The pulse speed V(S,A) increases very slow with A, especially in the case of large 
S 9 1 for which V < 1 (motion is retarded by an increased resistance along the thinned 
part of the film). The dependence differs from that for the travelling pulses to (3.21) 
studied previously by Kerchman & Frenkel (1994). This is manifested in mentioned 
differences of the long-time behaviour for S > 2. 

For A > A(n) x 2.871n there exist 1-hump travelling-wave solutions (k = 1, . . . , n) which 
are different from the slightly perturbed mini-trains of primary solitary pulses (of cell- 
length All each). The bifurcating stationary solutions are analogous to some multi- 
peak waves constructed for the Benney equation by Pumir et al. (1983) and for the 
dissipative-dispersive equation by Chang et al. (1993). Most of these second-kind 
sections are unstable or less stable than single-crest-in-cell solutions and their 
combinations, and are not considered here. We discovered, however, stable multi-peak 
structures in simulations of (3.11) (see figure 20). 

The film velocity field in a reference frame moving with the steady pulse can be 
represented in terms of the (plane-type) stream function Y2 

w 2 + w 2 - p ~ ~ V -  1) = pa, Y2, u2 = -a* Y2 (5.7) 
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FIGURE 9. Steady pulse profiles (with the cell-length 4n, i.e. A = 2.0) for different values of S 
(shown at the crests). 
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FIGURE 10. Pulse solutions with different spatial periods 27th for S = 0.8. Each short vertical line 
at the Z-axis indicates the end of the respective cell, and the value of A is given next to it. 
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FIGURE 1 1. (a) Profile of the pressure gradient p ,  = - S(H, + Ifzzz) along the travelling pulseform For 
S = 0.8 ( A  = 2.0). (b) Steady streamline portrait for rescaled flow (5.7) and (5.8) in a cell moving with 
the speed V(S,A) = 0.99. Dash curve correspond to the value 0.25 and is close to a separating 
streamline. Ordinate variable (1 - r ) / B  = -y. 

where according to (3.7) and (3.9) 

u, =~(l-yz)+(1-V)(y-1)+~,,(y3-2y+2-3y(1-y2)), au;, 
P* = - m, + rlzzz). 

Figure 11 shows the distribution of the perturbation pressure gradient p r  along the 
typical steady cell and the corresponding roll-wave streamline pattern (5.8). Capillary 
forces have high gradient in a narrow depression in front of the hump where thickness 
is minimal. It prevents the merger of two interacting unequal pulses as long as the 
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FIGURE 12. Pressure gradient along the steady pulse for S = 1.5 ( A  = 2.0). 

dynamics of relative motion is not strong enough to overcome this potential barrier 
(which can be very hgh  for S > 1, see figure 12). 

Interactions of ‘free’ pulses have local nature and in the simplest situations can be 
studied within a relatively short box with periodic conditions. Figure 13 (a) shows the 
collision of two steady pulses from a family in figure 10 (for S = 0.8) with the cell- 
lengths 2 7 4  and 2xA, (A,  = 2.4, A, = 1.6). It results in their coalescence similar to 
certain interactions in figure 5. In the instant of merger ( t  x 20) a structure of the 
double width 1 is formed with its local thickness ratio /31 (over the representative 
portion of the length 1 x 37c) about 2.5 times of the initial mean Po (see figure 13a, b). 
such a thickening does restrict further applicability of the simulation of figure 13 - 
which predicts the following formation of one larger pulse (and a far smaller residual 
droplet) - to very thin films, in this particular case with an initial thickness ratio 
Po < 0.05-0.06. 
In the case of sufficiently wide annulus the large-amplitude thin-film equation (3.19), 

based on a quasi-flat velocity approximation (3.9) and the leading term of the Taylor 
expansion in the right-hand side of (2.9), may eventually become inconsistent with the 
essentially cylindrical geometry of the film. In particular, (3.9 a) provides inadequate 
approximation for the perturbation pressure and its derivatives when Pq > 0.3. 
Analysis of the capillary instability of sufficiently thick liquid collars was carried out 
by Everett & Haynes (1972) and Gauglitz & Radke (1988), and confirmed 
experimentally. These studies as well as numerical simulations by Johnson et al. (1991) 
and Newhouse & Pozrikidis (1992) - all of them with no imposed flow - indicated the 
transition of collar growth to a rapid rearrangement of the annular configuration into 
a double-meniscus bridge when the thickness ratio (over a section of the length 22/2x) 
was greater than p,, = 0.1-0.17. That explains the lens formation in the low-Reynolds- 
number experiments by Aul & Olbricht (1990) even for the initially thin annular films 
v0 ranging from 0.03 to 0.07) when values of our parameter S were greater than 0.16 
-coalescence or just lobe-forming growth can increase local film volume to a 
supercritical level. (A rigorous higher-order analysis that supports the criterion of a 
local film thickness will be published elsewhere. It confirms that within its validity the 
leading-order equations provide a lower bound for the peak thickness, that can be 
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FIGURE 13. (a) Collision of two pulses for S = 0.8 within a small box (q = A,+A, = 4.0). (6) Time 
dependence of a local thickening factor B,/& (calculated as a volume of a section of the length 37t 
enclosing the larger peak). 

understood from the cylindric volume conservation.) In the case of initially very thin 
films the critical thickness may be reached after a sequence of mergers as in figure 5, 
and remember that a sharp transition to the coalescence-dominated evolution occurs 
at S ,  w 0.15. We do not consider here a slug flow regime which arises after infraction 
of integrity of the core by lenses of the wetting liquid and was observed by Aul & 
Olbricht (1990) (see approximate analysis in Bretherton 1961; Park & Homsy 1984; 
Schwartz, Princen & Kiss 1986; Georgiou et al. 1992). 

Returning to the thin-film equations, we note that the dissipative system governed 
by (3.20) with periodic conditions on an extended spatial interval (0,2xq) for S 2 0.1 
has several stable branches of fixed points which correspond to the different number 
of identical ‘solitary’ pulses it can accommodate. As an example, for q = 8.0 and S > 
0.2 this number can be from 1 to 6, with the respective cell-lengths A, = q/k,  k = 1,. . . , 6  
(for S = 0.8 three ‘generic’ pulses from this family are seen in figure 10.) Steady k- 
pulse trains of different multiplicity have substantially distinct basins of attraction and 
unalike stability with respect to the finite-amplitude perturbations. (Certain comb- 
inations of the matching 1-sections of the second kind - and the unsteady attractors - 
may exist as well.) The situation is typical also for other highly nonlinear interfacial 
equations: (3.21) studied in Kerchman & Frenkel(1994), the Benney equation (Joo & 
Davis 1992) - and pattern selection, in contrast to some weakly nonlinear problems 
(see e.g. Cross & Hohenberg 1993; Chang et al. 1993), cannot be based solely on the 
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FIGURE 14. Time history of the primary (k  = 2) and secondary (k  = 1) subharmonics in the course 
of equilibration of a weakly modulated wavetrain for S = 0.15 (q = 8). 

secondary ‘infinitesimal’ (in)stability. It was suggested for nonlinear waves in a film 
down an inclined plane (Joo & Davis 1992; Liu & Gollub 1994) that development of 
the spatially subharmonic instability in wavetrains may be responsible for the 
spatiotemporal irregularities or the formation of larger structures. We studied 
numerically secondary instabilities in the ideal patterns composed of identical steady 
pulses (5.1) and subjected to subharmonic disturbances. The initial conditions for the 
case in figure 14 correspond to four pulses with cell-length 47r ( A  = 2.0) on the interval 
(0,2nq) where q = 8 (= 4A,), modulated by a long-wave disturbance - 0.005 cos (z /q) .  
Evolution of the pulse train in this case of a near-threshold S = 0.15 is only slightly 
perturbed by the decaying weak interactions and tends to the equilibrated steady 
propagation. Figure 14 shows development of the lowest modes in a discrete Fourier 
representation 

(5.9) 

Magnitudes of both the primary subharmonics lA21 and secondary subharmonics lAll 
are fading away at t +  00 (in similar computations for the Benney equation by Joo & 
Davis (1992) the undamped quasi-periodic in time or chaotic regimes were observed). 
Thus in the range of S where ‘regular’ pulse trains typically appeared in the long-time 
simulations in $4 (0.09 < S < 0.15) the steady pulse solutions turn out to be stable with 
respect to the small-amplitude subharmonic disturbances. 

Evolution for S = 0.3 is presented in figure 15. A lattice of eight identical pulses of 
length 45c (Ao = 2) is superimposed by initial disturbance - 0.02 cos (z/q), q = 16. After 
a number of particle-like interactions in which both the primary subharmonics A, and 
secondary subharmonics A are amplified, further development of the system leads to 
coalescence and the following cascade growth quite similar to figure 3. Thus a finite- 
amplitude subharmonic instability may indeed trigger mergers. The example shows 

K 

v(z, t )  = c { A k ( t )  exp (ikz/q) + exp (-ikz/q))* 
k=l  
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FIGURE 15. (a) Evolution of a long pulse train for S = 0.3 (q = 16). (b) Development of subharmonic 
modes. Coalescence may be initiated by the preceding growth of the secondary (k = 2) and primary 
(k = 4) subharmonics. 

also that for almost all reasonable initial conditions the extended system is attracted to 
the same l-cell state, as we observed in $4 for 0.2 < S < 1 and 1 -4 q < A,(S) with the 
small-amplitude initial conditions. This is in sharp contrast with the prevalent 
behaviour in a subthreshold range of the parameter (0.08 < S < 0.15) when major 
basins of attraction are associated with the steady N-pulse trains (:q < N < gq). 

6. Effects of the interfacial shear: weakly nonlinear limit and general case 
For sufficiently small magnitudes of control parameter S (in particular, when 

S = O($) for some q > t )  the amplitudes 7,1 in (3.1 1) are expected to be small as 
compared to the undisturbed film thickness (and this has been verified in our 
computations), that is qmaz - 6 -4 1. In the case of moderate viscosity, stratification 
perturbations of the core flow have their dominant order of Yl = O(m-'/36). Thus the 
last term in (3.1 1) may be neglected when m-'/3 = o(S)  and the resulting small- 
amplitude evolution equation is a weakly nonlinear simplification of (3.19), the 
Kuramoto-Sivashinsky (KS) equation 

(6- 1) 3t + 7% + S(%2 + 172222) = 07 

which can be thrown into a standard form with all coefficients equal to one by means 
of q = SX, t = 7 / S  (and thus 6 - S). 

Indeed, simulation in figure 16 of the highly nonlinear equation (3.19) for S = 0.02 
demonstrates KS-like spatiotemporal chaos with strictly bounded amplitudes rmaz < 
2.5s quite similar to that in Kawahara (1983) and Hohenberg & Shraiman (1989). Such 
a chaotic behaviour represents the dominant regime up to S z 0.04. 

The interfacial shear in (3.11) cannot be ignored, however, when S is of the same 
(or higher) order in /3 as (1 -m)  m-l/?. Specifically, for m > 1 this means q %- 1 (but 
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FIGURE 16. Spatiotemporal chaos in simulation of (3.19) for S = 0.02 (q  = 25). 
Profiles are shown at time intervals At = 100. 

q < 2). By omitting nonlinear factors (1 + 7)" in (3.11) we obtain its weakly nonlinear 
version, previously derived in Frenkel (1988) and Papageorgiou et al. (1990) 

Conditions (3.17) for the leading-order stream function in the core P:) reduce to the 
linear coupling relations 

a, ylio) = 0, !q '+a ,  e) = 2(1 -m)m-'py (Y = I). (6.3) 

The solution to the core problem (3.14), (6.3) in the form of Fourier representation 

1 "  
(6.4) ul"' = - (2x)1/2 J-, ~ a e i ~ ~ d ~ ~  

can be written as 
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The corresponding interfacial shear quantity was obtained by Papageorgiou et al. 
( 1990) 

Thus the small-amplitude evolution equation, which implies complete disregard for 
factors (1 + T ) ~  in (3.1 l), is that due to Papageorgiou et al. (1990), of the KS type with 
an additional dispersive term 

rt + 772 + S(T2, + rzzz,) 

The shortest wavemodes with a 9 1 are overdamped by the dissipation and only 
behaviour of the coupling kernel for small and moderate wavenumbers a = O(1) is 
essential. A fraction which is responsible for dispersive properties of the last term in 
(6.7) has the following long-wave asymptotics (for la1 < 4) 

and a proper approximation of the interfacial coupling (3.13) is 

Therefore we expect behaviour of solutions of the modified (non-local) equation 
(6.7) to be close to that for the dissipative-dispersive equation considered by Kawahara 
and co-workers (Kawahara 1983; Kawahara & Toh 1988) 

where 
(6.10) 

(6.11) 

Equations (6.7) and (6.10) can be rescaled by means of 

r =  sx, t = T / S ,  c =  scd, (6.12) 

which turns them into a form with single parameter cd, coefficient of the dispersive term 
( D T )  

X , + X X , + X , , + X , , ~ ~ + c d D T  = 0, (6.13) 

where the integral DT in the exact case (6.6) should be taken with the kernel 
6{a2c(a)/d} - 12a. Note that the weakly nonlinear interfacial equations (6. l), (6.7) and 
(6.10) admit symmetry {v+-r , z+-z}  while (3.19) and (3.11) do not: the factors 
(1 + q)n (with n = 1,2,3) introduce influence of the wall. 

In figures 17 and 18 we present results of simulations of (6.7) and (6.10) in the form 
(6.1 3) for the same 'random' initial conditions. At sufficiently high dispersion 
(cd 2 0.3) disturbances evolve into a pulse train which after a number of particle-like 
interactions tends to a steady propagation of identical (but not equidistant) travelling 
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FIGURE 17. Development of an equilibrated pulse train in simulation of the modified KS equation 
with dispersion (6.13) for c, = 0.4. Solid profiles correspond to the Kawahara equation, dotted 
profiles to the exact dispersive kernel (virtually coincide). 

waves, see figure 17 for c, = 0.4. This 'regularizing' effect of linear dispersion is the 
same as in the previous simulations and analysis of (6.13) by Kawahara (1983), 
Kawahara & Toh (1988) (see also Elphick et al. 1991; Chang et al. 1993). Solutions 
both for the exact and approximate kernels are extremely close. An example of semi- 
chaotic evolution of a cellular pattern for weaker dispersion (c, = 0.2) is shown in 
figure 18. There are spatiotemporal discrepancies in the details of development (in 
particular, in phase shifts, similar to their appearance under small variations of other 
parameters, see Kawahara & Takaoka 1989), but evolution both for the exact and 
approximate dispersive kernel is attracted to very close low-dimensional inertial 
manifolds. 

As previously mentioned, solutions of a highly nonlinear equation (3.19) are close to 
those of the KS equation (6.1) only for sufficiently small values of parameter S c 0.04. 
In the range of S > 0.1 behaviour of solutions differs both qualitatively and even by 
the order of amplitudes. It is necessary, therefore, for small values of S N 0.1 to solve 
equation (3.11) in its full form with the interfacial shear according to (6.6) and (6.9) 
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FIGURE 18. Chaotic evolution of a cellular pattern for c, = 0.2 (q = 16). Notation as in figure 17. 
Behaviour is practically the same for the exact and approximate kernels except for specific details like 
phase shifts and defects disposition. 

or at least a ‘moderately’ nonlinear O($) truncation of (3.1 1) and (6.14) (for 171 < 0.3) 

For the exact expression (6.6) one must replace vcs in the last term of (6.14) with 
the inverse Fourier transform of 6{2 - ac(a)/d} 7,. Solutions both for the exact and 
approximate kernel are still very close, and we further refer to a more compact form 
(6.14) (which also allows easier analysis and numerical solution). 

Note that we can consider simplified forms (6.2)’ (6.7) and (6.15) of (3.1 1) and (6.14) 
in the control parameters range S 4 1, c 4 1 in a strictly asymptotic manner with 
proper rescaling (6.12) to the ‘generic’ equation (6.13) only for the case of very small 
S and c of the same order (and within the validity limitations expressed in terms of the 
perturbation parameter p). Otherwise, (6.14) and (6.15) should be regarded as 
composite equations (Van Dyke 1975) where it concerns sensitivity to reasonably small 
S and c. Comparison of (6.15) with (6.10) and (6.13) shows that even for fairly small 
values of the coupling parameter (6.1 1) K =  12c - 0.1 (c - some substantial 
contribution to the convective term can be missed in a ‘straightforward’ derivation of 
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the small-amplitude equations (6.2) and (6. lo), especially in the case of less viscous 
annulus (m c l) ,  when c is positive. The weakly nonlinear version of (6.14) should be 
written as 

%+(I -48c)r?15+S(?7a+r5555)+CDT = 0. (6.16) 

Thus, for physically reasonable magnitudes of the film thickness ratio /? = 0.005-0.1, 
and m c 1 one must consider the canonic form (6.13) of the dissipative-dispersive 
equation under modified interfacial renormalization 

X = (1  - 4 8 ~ )  r / S ,  7 = St,  cd = c/S.  (6.17) 

A rough judgement concerning the importance of (non-weakly) nonlinear effects in 
(6.14) may be based on the magnitude of amodified parameter (3.12): S,  = S/ll-48c(. 
Recall that there is a lower constraint on the validity of (3.1 I), (3.20) and (6.14H6.16) 
which can be stated here as S,//?z % 1 ,  in order to keep intact the capillarity-set scales. 
This narrows down the window where the weakly nonlinear approach seems justified. 
In figure 19 we present examples of the simulation (6.15), and (6.7) in the corrected 
form (6.16) ~ with the same initial conditions for S = 0.05 -in the case of low 
dispersion (c = 0.01 ; S, = 0.095). It demonstrates that higher nonlinearity brings about 
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FIGURE 20. Development of the multi-peaked structures in simulation of (6.14) for S = 0.05 and 
c = 0.015 (q = 16). Dotted profiles are plotted at certain times for better distinguishability. 

stabilization of the defect-mediated irregularities in (6.7) and development of a steady 
pulse train. 

Figure 20 shows the simulation of (6.14) for a yet weaker stabilizing convective term 
and relatively high dispersion: S = 0.05, c = 0.015 (S,  = 0.179). Initially, developing 
waves stick together into pulseforms with two and three humps (of double and triple 
width, respectively), and eventually such inelastic interactions can result in the 
formation of broad bridges which separate elongated slugs of the core fluid. 

Figure 21 shows evolution governed by (6.14) for stronger surface tension and 
weaker coupling: S = 0.1 and c = 0.008 (S,  = 0.163). Dispersion contributes to the 
formation of a large singular pattern that occurs after a number of particle-like 
interactions. This structure which develops at t > 460 grows like an approximate blow- 
up solution to (6.14) as intermediate asymptotics 

E = C - C p  (t* - t)"' 
h = l + q = -  B(E) (6.18) 

where Q denotes the tip location and w z f, see dependence for the peak's height 
h, = h(&) in figure 21 (b). This behaviour, which leads the system beyond the premises 
of validity, is different from the cascade growth in evolution governed by (3.20) that we 
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FIGURE 21. (u) Evolution for S = 0.1 and c = 0.008 that leads to blow-up. Solid profiles are shown 
at time intervals At = 20. Dotted profile is at f = 468. (b) Time dependence for identifying the peak’s 
growth with finite-time singularity (6.18). The solid line represents an intermediate self-similar stage. 

described in $4. Although (3.20) may have an approximate blow-up solution of the 
same form (6.18), we never observed the large-amplitude explosive growth (without 
any mergers in simulations for that decoupled equation. Kalliadasis & Chang (1994) 
attempted to describe the pulse growth in the evolution governed by the film-on-fibre 
equation (3.21) by approximate solutions in the form (6.18). However, their 
interpretation concerns a intermediate stage : (h < 3, It, - tl - 1) of the primary 
instability development, when the convective term (neglected to achieve self-similarity) 
is in fact of the same order as those left. Our extensive simulations of the same equation 
(3.21) with various small-amplitude initial conditions (partly presented in Kerchman & 
Frenkel 1994) demonstrated that except for a comparatively short stage of primary 
development, the pulse growth for S, > 1 is predominantly due to coalescences. 
Intermediate blow-up behaviour (6.18) for (6.14) may be of the same nature as for 
nonlinear dispersive equations of KdV type (see e.g. Bona & Saut 1993). 

Stronger interfacial shear (when c 2 0.04) brings nonlinear stabilization even for 
S = 0.2-0.3. Both components of the convective term enter in (6.14) with negative 
coefficients, and the appropriate reference frame (6.11) moves far slower than the 
unperturbed interface, with a factor (1-12c). Evolution in figure 22 for S = 0.15 and 
c = 0.06 (S,  = 0.08 and high dispersion with cd = c / S  = 0.4) settles to a lattice of 
inverted saw-tooth pulses (note that in this range of c, transformation (6.17) to the 
normalized weakly nonlinear form (6.13) implies reflection with respect to the 
unperturbed interface 17 = 0). Stronger surface tension and low dispersive coefficients 
promote limited mergers of structures and the formation of larger core bulges 
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FIGURE 22. Regular train of inverted pulses for S = 0.15 and c = 0.06. 

(‘negative pulses’) which may approach the wall, as in figure 23. This pattern resembles 
‘bamboo waves’ observed by Bai et al. (1992), but their experiments were performed 
with larger Reynolds numbers when inertial .terms are significant (in particular, it 
results in shortening of unstable wavelengths.) It should be noted that strong viscosity 
stratification (rn < p) reduces growth rates of the linearly unstable wavemodes a < 1 
(Hammond 1983; Hu & Joseph 1989; Joseph & Renardy 1993), and correspondingly 
the effective value of parameter S in (6.14) and (6.15), roughly speaking to S = fS 
where f =f (P /m) ,  0.3 < f < 1. 

-&9 for 
m $ 1, and according to (6.15) and (6.16) the interfacial shear has stabilizing effect for 

The general case R, - 1 can be considered in a similar way by replacing the kernel 
in (6.6) with the complex-valued one which corresponds to the Orr-Sommerfeld 
equation (and is expressed by means of Kummer function in Frenkel 1988 and 
Georgiou er al. 1992). Inertia of the core flow contributes not only to the convective 
term and dispersion, but also to dissipative effects in the interfacial shear. Cross- 
influence of the parameters makes study of the relative importance of dispersion and 
dissipation more complicated. 

In the case of less viscous core fluid the coefficient (6. I 1) is negative: c 

s = O(j3). 
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FIGURE 23. Formation of the ‘negative solitary waves’ (bulges of the core) in a strongly coupled 

CAFF for S = 0.2 and c = 0.05 (q = 16). 

7. Summary and concluding remarks 
We have developed a nonlinear theory of undulating interfaces in a coreannular 

flow in the limit of thin annulus: /3 = (R,-R,) /R,  -4 1. Capillary pressures at the 
interface are supposed to be high enough to set orders of magnitudes in the film flow 
with a major spatial scale of the order of linearly unstable wavelengths (about an 
undisturbed circumference). This allows us to analyse perturbed flow by a lubrication- 
type approximation for thin annular film. We derive a leading-order nonlinear 
equation (3.1 1) which describes development of interfacial disturbances up to the 
amplitudes of the order of unperturbed film thickness. Shear coupling with the core 
flow depends on the viscosity ratio m = p Z / p l ,  and enters in the nonlinear terms of the 
equation as well. Long-time interfacial evolution governed by (3.1 1) and its particular 
case (3.20) demonstrate rich dynamics of coherent structures which sharply depend on 
the control parameter S = /33~/(3pz qf) - /3,/C, where qf is the velocity of 
undisturbed interface, and C is the capillary number, C < min { 1 , m}. In narrow regions 
of the parameter space, where weakly nonlinear versions of (3.20) and (3.11) are valid, 
evolution is attracted to the KS-type chaos and the dispersion-regularized wavetrains 
respectively - thus keeping the interfacial disturbances at small amplitudes. Non- 
linearities in the dissipative (and quasi-dispersive) terms change the character of 
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FIGURE 24. Sketch of the parameter space with regions corresponding to different flow conditions (m- 
axis is in a logarithmic scale). Inside the ‘slab’ (I) with a dotted boundary: m 2 /P2, 1.5 > S > 0.2, 
evolution governed by (3.20) leads to the formation of thick-film non-uniformities via cascade 
absorption. In the domain (1’) above, extreme film thinning may occur too. Within the slender wedge 
(11): 0.04 > S, + $, m 9 /?, a weakly nonlinear approach is valid. In the region (111) with dash-dotted 
edges the strongly nonlinear regimes with a significant interfacial shear are realized. 

interactions of the pulse-like structures. In conjunction with the secondary instabilities 
it can result in the formation and growth of the large-scale inhomogeneities. These 
phenomena break the weakly nonlinear mechanisms of primary saturation proposed in 
Frenkel et al. (1987) and Papageorgiou et al. (1990). The spatial non-uniformities in an 
extended system for certain conditions are asymptotically bounded (quasi-)regular 
patterns, but more often they eventually lead the configuration out of geometric and 
physical limitations of the thin annular film model. 

Figure 24 depicts schematics of regions in the space of basic parameters { /3, m, S} 
which correspond to various regimes of CAFF we were able to find. For S > 0.2 and 
the viscosity ratio m sufficiently larger than the thickness ratio (‘slab’ I with dotted 
boundary and the region I’ above it) one can neglect coupling with the core and 
consider evolution governed by (3.20) (the same is true in some subregions below 
around the plane m = 1 and for m B 1). Development of the interfacial disturbances 
in this range of parameters almost inevitably leads to a virtual breakup of the perfect 
CAF - mainly due to coalescences and the ‘topological’ instability of thick-film 
collars. This is in a good agreement with experimental data by A d  & Olbricht (1990). 
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Within a slender wedge I1 with a shaded top: /3 > S 9 p”, m B /I, the weakly nonlinear 
equation (6.13), (6.16) is valid. 

In the case of less viscous annular film, the shear coupling with the core flow plays 
an important role even for fairly small values of the linking parameter K =  
2/3( 1 - m) (m + 2p)/m2 - 0.1. Involvement of the core changes the character of 
perturbation flow in the film by contributing both to the convective term of the 
equation and the (nonlinear) dispersion-like effects. The effects of surface tension and 
of interfacial shear are fundamentally combined but may be roughly evaluated in terms 
of modified parameters S, = S/ll-4KI and cd = c / S .  The modified weakly nonlinear 
equation (6.16) is valid only for S,  < 0.04. Moderate coupling when K = 0.1-0.3 affects 
in a disbalancing way even for S - 0.05 owing to effective reduction of the stabilizing 
convective term. A ‘ceiling’, above which large structures are formed and the CAF 
eventually collapses, is found to correspond S, = 0.1-0.14. The region below is roughly 
shown in figure 24 as a ‘ scoop’ I11 with the dot-dashed edges. Stronger interfacial shear 
(K > 0.4) brings stabilization to a train of inverted pulses (part of region I11 which is 
closer to its ‘face’ for /I = 0.03-0.1). In the rest of the parameter space: m - /3 for 
S = O(1) or m 4 /3 for any S - either nonlinear terms in the interfacial conditions for 
the core or inertial terms in the flow equations are essential. 

CAF with a density stratification can be analysed by employing additional 
parameters (see Joseph & Renardy 1993) 

-the latter is important in the case of vertical CAF (z-axis is upwards). 
For small Bond numbers Bo 4 1 the difference of densities in a horizontal CAFF can 

be neglected. Density stratification in a vertical CAFF contributes to the second-order 
effects for the linear stability and weakly nonlinear interfacial waves (Georgiou et al. 
1992; Smith 1989) as compared with the viscosity stratification ones. Strongly 
nonlinear interfacial waves in a general case of vertical CAFF can be described by the 
same leading-order equation (3.1 1) and its particular cases where parameters are based 
on the effective pressure gradient 4 = F-p1,g. (This allows physical modelling of the 
perfect pressure-driven CAFF at low Reynolds numbers by a vertical cocurrent 
upward flow with the same value of parameter S in a tube of larger radius when 
1 z 1 and FQ is relatively small.) The exception is for very small magnitudes of 4 when 
Pl l -  11/4 is of order one. In this special case the convective term of a leading-order 
equation contains additional cubic nonlinearity due to the gravity contribution, and 
certain distinctive features of the large-amplitude interfacial evolution appear in the 
countercurrent flow for S > 0.2 (Frenkel & Kerchman 1994). 

The work was initiated and partially done at the University of Alabama, Tuscaloosa, 
and supported in part by the US DOE under Grant DE-FG05-90ER14100. I wish to 
thank A. L. Frenkel for stimulating discussions at the onset of this work. The author 
has also benefitted from helpful comments by an anonymous reviewer. 
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